Package: SVMMaj 0.2.9.3

SVMMaj: Implementation of the SVM-Maj Algorithm

Implements the SVM-Maj algorithm to train data with support vector machine <doi:10.1007/s11634-008-0020-9>. This algorithm uses two efficient updates, one for linear kernel and one for the nonlinear kernel.

Authors:Hoksan Yip [aut, cre], Patrick J.F. Groenen [aut], Georgi Nalbantov [aut]

SVMMaj_0.2.9.3.tar.gz
SVMMaj_0.2.9.3.zip(r-4.5)SVMMaj_0.2.9.3.zip(r-4.4)SVMMaj_0.2.9.3.zip(r-4.3)
SVMMaj_0.2.9.3.tgz(r-4.5-any)SVMMaj_0.2.9.3.tgz(r-4.4-any)SVMMaj_0.2.9.3.tgz(r-4.3-any)
SVMMaj_0.2.9.3.tar.gz(r-4.5-noble)SVMMaj_0.2.9.3.tar.gz(r-4.4-noble)
SVMMaj_0.2.9.3.tgz(r-4.4-emscripten)SVMMaj_0.2.9.3.tgz(r-4.3-emscripten)
SVMMaj.pdf |SVMMaj.html
SVMMaj/json (API)

# Install 'SVMMaj' in R:
install.packages('SVMMaj', repos = c('https://hoksanyip.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.36 score 1 stars 23 scripts 233 downloads 9 exports 38 dependencies

Last updated 4 months agofrom:54342280e7. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 21 2025
R-4.5-winOKFeb 21 2025
R-4.5-macOKFeb 21 2025
R-4.5-linuxOKFeb 21 2025
R-4.4-winOKFeb 21 2025
R-4.4-macOKFeb 21 2025
R-4.3-winOKFeb 21 2025
R-4.3-macOKFeb 21 2025

Exports:aucclassificationgetHingeisbnormalizeplotWeightsroccurvesvmmajsvmmajcrossval

Dependencies:clicolorspacedplyrfansifarvergenericsggplot2gluegridExtragtableisobandkernlablabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrR6RColorBrewerRcppreshape2rlangscalesstringistringrtibbletidyselectutf8vctrsviridisLitewithr

paper

Rendered frompaper.Rnwusingutils::Sweaveon Feb 21 2025.

Last update: 2024-11-22
Started: 2018-02-25